171 research outputs found

    The Comparison of Information Systems Develop Trends between the Chinese Mainland and International

    Get PDF
    The aims of this research are two fold. First, it compares the research focus of Information Systems in Mainland China with that of the international IS research community. Second, the paper describes the main features and trend of IS research in Mainland China, and makes some suggestions as to some possible interesting research arena. The data are from twenty five academic journals in China and proceedings of international Information Systems conferences

    Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability

    Get PDF
    Graphene-based nanocomposites attract many attentions because of holding promise for many applications. In this work, multishelled NiO hollow spheres decorated by graphene nanosheets nanocomposite are successfully fabricated. The multishelled NiO microspheres are uniformly distributed on the surface of graphene, which is helpful for preventing aggregation of as-reduced graphene sheets. Furthermore, the NiO/graphene nanocomposite shows much higher electrochemical performance with a reversible capacity of 261.5 mAh g−1 at a current density of 200 mA g−1 after 100 cycles tripled compared with that of pristine multishelled NiO hollow spheres, implying the potential application in modern science and technology

    Research progress on the STAT signaling pathway in pregnancy and pregnancy-associated disorders

    Get PDF
    Signal transducer and activator of transcription (STAT) proteins, pivotal regulators of signaling cascades, undergo activation in response to the stimulation of cytokines and growth factors, and participate in biological processes, including inflammation, immune responses, cell proliferation, and differentiation. During the process of pregnancy, STAT signaling is involved in regulating embryonic implantation, endometrial decidualization, and establishing and maintaining maternal-fetal immune tolerance. Increasing evidence suggests that aberrant STAT signaling contributes to the occurrence and development of pregnancy disorders, including repeated implantation failure (RIF), preeclampsia (PE), recurrent spontaneous abortion (RSA), preterm birth (PTB) and gestational diabetes mellitus (GDM). Elucidating the molecular mechanisms of the STAT signaling pathway holds promise for further understanding the establishment and maintenance of normal pregnancy, and thereby providing potent targets and strategic avenues for the prevention and management of ailments associated with pregnancy. In this review, we summarized the roles of the STAT signaling pathway and its related regulatory function in embryonic implantation, endometrial decidualization, and maternal-fetal immune tolerance. In conclusion, in-depth research on the mechanism of the STAT signaling pathway not only enhances our understanding of normal pregnancy processes but also offers STAT-based therapeutic approaches to protect women from the burden of pregnancy-related disorders

    The emerging roles of TLR and cGAS signaling in tumorigenesis and progression of ovarian cancer

    Get PDF
    Ovarian cancer is fatal to women and has a high mortality rate. Although on-going efforts are never stopped in identifying diagnostic and intervention strategies, the disease is so far unable to be well managed. The most important reason for this is the complexity of pathogenesis for OC, and therefore, uncovering the essential molecular biomarkers accompanied with OC progression takes the privilege for OC remission. Inflammation has been reported to participate in the initiation and progression of OC. Both microenvironmental and tumor cell intrinsic inflammatory signals contribute to the malignancy of OC. Inflammation responses can be triggered by various kinds of stimulus, including endogenous damages and exogenous pathogens, which are initially recognized and orchestrated by a series of innate immune system related receptors, especially Toll like receptors, and cyclic GMP-AMP synthase. In this review, we will discuss the roles of innate immune system related receptors, including TLRs and cGAS, and responses both intrinsic and exogenetic in the development and treatment of OC

    Exploring the DNA-recognition potential of homeodomains

    Get PDF
    The recognition potential of most families of DNA-binding domains (DBDs) remains relatively unexplored. Homeodomains (HDs), like many other families of DBDs, display limited diversity in their preferred recognition sequences. To explore the recognition potential of HDs, we utilized a bacterial selection system to isolate HD variants, from a randomized library, that are compatible with each of the 64 possible 3′ triplet sites (i.e., TAANNN). The majority of these selections yielded sets of HDs with overrepresented residues at specific recognition positions, implying the selection of specific binders. The DNA-binding specificity of 151 representative HD variants was subsequently characterized, identifying HDs that preferentially recognize 44 of these target sites. Many of these variants contain novel combinations of specificity determinants that are uncommon or absent in extant HDs. These novel determinants, when grafted into different HD backbones, produce a corresponding alteration in specificity. This information was used to create more explicit HD recognition models, which can inform the prediction of transcriptional regulatory networks for extant HDs or the engineering of HDs with novel DNA-recognition potential. The diversity of recovered HD recognition sequences raises important questions about the fitness barrier that restricts the evolution of alternate recognition modalities in natural systems

    Quest for Lead-Free Perovskite-Based Solar Cells

    Get PDF
    Today, the perovskite solar cells (PSCs) are showing excellent potentials in terms of simple processing, abundance of materials, and architectural integration, as well as very promising device’s power conversion efficiencies (PCEs), rocketed from 3.8% in 2009 to 23.3% in 2018. However, the toxic lead (Pb) element containing the chemical composition of typically used organic-inorganic halide perovskites hinders the practical applications of PSCs. This chapter starts with a general discussion on the perovskite crystal structure along with the serious efforts focused on Pb replacement in these devices. Section 2 will elaborate the fundamental features of tin (Sn)-based perovskites together with their performance in the PSCs. Other alternative elements, such as copper (Cu), germanium (Ge), bismuth (Bi), and antimony (Sb), will be discussed in Section 3. The end will summarize the challenges and opportunities based on the chapter contents
    • …
    corecore